organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

8,8-Dimethyl-5-(4-methylphenyl)-8,9dihydropyrimido[4,5-b]quinoline-2,4,6(1*H*,3*H*,7*H*)-trione *N*,*N*-dimethylformamide solvate

Jing Wang,^a Sai-Nan Ni^b and Daging Shi^c*

^aXuzhou Medical College, Xuzhou 221002, People's Republic of China, ^bDepart-Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China, and ^cDepartment of Chemistry and Chemical Engineering, Suzhou University, Suzhou 215123, People's Republic of China Correspondence e-mail: dqshi@263.net

Received 16 October 2007; accepted 25 January 2008

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; R factor = 0.046; wR factor = 0.135; data-to-parameter ratio = 15.0.

The title compound, $C_{20}H_{19}N_3O_3 \cdot C_3H_7NO$, was synthesized by the reaction of 6-aminopyrimidine-2,4(1*H*,3*H*)-dione and 4methylbenzaldehyde with 5,5-dimethyl-1,3-cyclohexanedione in 1-butyl-3-methylimidazolium bromide at 363 K. The pyrimidine ring adopts a half-chair conformation while the six-membered ring fused to the pyridine ring adopts a skewboat conformation. The dihedral angle between the pyridine ring and the attached benzene ring is 2.38(8)°

Related literature

For related literature, see: Bhuyan *et al.* (1999); Clercq (1986); Gangjee *et al.* (1999); Griengl *et al.* (1987); Hirota *et al.* (1981); Jones *et al.* (1979); Nasr & Gineinah (2002); Pontikis & Monneret (1994); Sasaki *et al.* (1980).

a = 8.8252 (16) Å

b = 10.289 (2) Å

c = 12.316 (2) Å

Experimental

Crystal data $C_{20}H_{19}N_3O_3 \cdot C_3H_7NO$ $M_r = 422.48$ Triclinic, $P\overline{1}$

$\alpha = 95.898 \ (3)^{\circ}$	
$\beta = 93.115 \ (3)^{\circ}$	
$\gamma = 94.719 \ (3)^{\circ}$	
V = 1106.4 (4) Å ³	
Z = 2	

Data collection

Bruker SMART 1000	6083 measured reflections
diffractometer	4285 independent reflections
Absorption correction: multi-scan	2833 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.018$
$T_{\min} = 0.978, \ T_{\max} = 0.989$	
Refinement	

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

 $0.24 \times 0.16 \times 0.12$ mm

T = 294 (2) K

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.045 & 1 \text{ restraint} \\ wR(F^2) &= 0.134 & H\text{-atom parameters constrained} \\ S &= 1.00 & \Delta\rho_{\text{max}} = 0.25 \text{ e } \text{ Å}^{-3} \\ 4285 \text{ reflections} & \Delta\rho_{\text{min}} = -0.23 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1\cdots O4^{i}$	0.90	1.96	2.854 (2)	170
$N2-H2\cdots O1^{ii}$	0.90	1.97	2.846 (2)	167

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors are grateful to the Foundation of the Key Laboratory of Biotechnology on Medical Plants of Jiangsu Province for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2057).

References

- Bhuyan, P. J., Borah, H. N. & Sandhu, J. S. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 3083–3084.
- Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Clercq, E. D. (1986). J. Med. Chem. 29, 1561-1569.
- Gangjee, A., Adair, O. & Queener, S. F. (1999). J. Med. Chem. 42, 2447-2455.

Griengl, R., Wack, E., Schwarz, W., Streicher, W., Rosenwirth, B. & Clercq, E. D. (1987). J. Med. Chem. 30, 1199–1204.

- Hirota, K., Kitade, Y., Senda, S., Halat, M. J., Watanabe, K. A. & Fox, J. J. (1981). J. Org. Chem. 46, 846–851.
- Jones, A. S., Verhalst, G. & Walker, R. T. (1979). Tetrahedron Lett. 20, 4415– 4418.
- Nasr, M. N. & Gineinah, M. M. (2002). Arch. Pharm. 335, 289-295.
- Pontikis, R. & Monneret, C. (1994). Tetrahedron Lett. 35, 4351-4354.
- Sasaki, T., Minamoto, K., Suzuki, T. & Yamashita, S. (1980). *Tetrahedron*, **36**, 865–870.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2008). E64, o606 [doi:10.1107/S1600536808002924]

8,8-Dimethyl-5-(4-methylphenyl)-8,9-dihydropyrimido[4,5-*b*]quinoline-2,4,6(1*H*,3*H*,7*H*)-trione *N*,*N*-dimethylformamide solvate

J. Wang, S.-N. Ni and D. Shi

Comment

The importance of uracil and its annelated derivatives is well recognized by synthetic (Sasaki *et al.*, 1980; Bhuyan *et al.*, 1999) as well as biological (Griengl *et al.*, 1987; Pontikis *et al.*, 1994) chemists. With the development of clinically useful anticancer and antiviral drugs (Clercq *et al.*, 1986; Jones *et al.*, 1979), there has recently been remarkable interest in the synthetic manipulations of uracils (Hirota *et al.*, 1981). Pyrido[2,3-*d*]pyrimidines represent a heterocyclic ring system of considerable interest because of several biological activities associated with this scaffold. Some analogues have been found to act as anticancer agents inhibiting dihydrofolate reductases or tyrosine kinases (Gangjee *et al.*, 1999), while others are known antiviral agents (Nasr *et al.*, 2002).

The title compound was synthesized by the reaction of 6-aminopyrimidine-2,4(1*H*,3H)-dione and 4-methylbenzaldehyde with 5,5-dimethyl-1,3-cyclohexanedione using 1-butyl-3-methylimidazolium bromide ([bmim]Br) as solvent at 363 K.

In the title compound the pyridine ring (C13/C3/C4/C5/C12/N3) is a newly formed planar ring. The pyrimidine ring is less planar with atom C2 deviating from the C3/C1/C13/N1/N2 plane by -0.108 (3) Å (Fig. 1). The six-membered ring fused on to the pyridine ring adopts a skew-boat conformation; atoms C6, C5, C12 and C11 are coplanar, with atoms C7 and C8 deviating from the plane by -0.301 (2) and 0.458 (6) Å, respectively. The dihedral angle between the C13/C3/C4/C5/C12/N3 plane and the C3/C1/C13/N1/N2 plane is 2.38 (8) °, they are almost coplanar. The dihedral angle between the C13/C3/C4/C5/C12/N3 plane and the C14/C15/C16/C17/C19/C20 plane is 77.99 (5) °. The molecules are linked by N1—H1···O4 and N2—H2···O1 intermolecular hydrogen bonds (Table 1) to form dimers (Fig. 2).

Experimental

The title compound was prepared by the reaction of 6-aminopyrimidine-2,4(1*H*,3H)-dione (2 mmol) and 4-methylaldehyde (2 mmol) with 5,5-dimethyl-1,3-cyclohexanedione (2 mmol) in [bmim]Br (2 ml) at 363 K. Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a *N*,*N*-dimethylformamide and water solution. ¹H NMR (DMSO-d₆, δ): 1.03 (6*H*, s, 2*CH₃), 2.35 (3*H*, s, CH₃), 2.40 (2*H*, s, CH₂), 2.74 (3*H*, s, CH₃), 2.90 (3*H*, s, CH₃), 3.01 (2*H*, s, CH₂), 6.89 (2*H*, d, J = 8.0 Hz, ArH), 7.08 (2*H*, d, J = 8.0 Hz, ArH), 7.96 (1*H*, s, CH), 11.12 (1*H*, s, NH), 11.88 (1*H*, s, NH).

Refinement

The amino H atoms were located in a difference map and kept riding subsequently. The C-bound H atoms were placed in calculated positions, with C—H = 0.93–0.97 Å, and included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2-1.5 U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound showing 40% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2. The crystal packing of the title compound.

8,8-Dimethyl-5-(4-methylphenyl)-8,9-dihydropyrimido[4,5-*b*]quinoline- 2,4,6(1*H*,3H,7*H*)-trione *N*,*N*-dimethyl-formamide solvate

Crystal data

$C_{20}H_{19}N_3O_3 \cdot C_3H_7NO$	Z = 2
$M_r = 422.48$	$F_{000} = 448$
Triclinic, P1	$D_{\rm x} = 1.268 {\rm ~Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 8.8252 (16) Å	Cell parameters from 2318 reflections
b = 10.289 (2) Å	$\theta = 2.5 - 26.3^{\circ}$
c = 12.316 (2) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\alpha = 95.898 \ (3)^{\circ}$	T = 294 (2) K
$\beta = 93.115 \ (3)^{\circ}$	Block, colorless
$\gamma = 94.719 \ (3)^{\circ}$	$0.24\times0.16\times0.12~mm$
$V = 1106.4 (4) \text{ Å}^3$	

Data collection

Bruker SMART 1000 diffractometer	4285 independent reflections
Radiation source: fine-focus sealed tube	2833 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.018$
T = 294(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 10$

(SADABS; Sheldrick, 1996) $T_{min} = 0.978, T_{max} = 0.989$ 6083 measured reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H-atom parameters constrained
$wR(F^2) = 0.134$	$w = 1/[\sigma^2(F_o^2) + (0.0627P)^2 + 0.2466P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
4285 reflections	$\Delta \rho_{max} = 0.25 \text{ e } \text{\AA}^{-3}$
285 parameters	$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: none
Primary atom site location: structure-invariant direct	

 $k = -10 \rightarrow 12$

 $l = -15 \rightarrow 11$

Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.66314 (15)	0.41510 (14)	0.49822 (12)	0.0587 (4)
O2	0.61458 (17)	0.01747 (15)	0.62264 (14)	0.0726 (5)
03	0.1315 (2)	-0.03738 (19)	0.88397 (19)	0.1117 (8)
N1	0.63982 (17)	0.22017 (16)	0.56995 (13)	0.0485 (4)
H1	0.7300	0.2042	0.5431	0.058*
N2	0.45129 (17)	0.36219 (16)	0.58594 (14)	0.0503 (4)
H2	0.4112	0.4358	0.5704	0.060*
N3	0.24137 (17)	0.32697 (15)	0.68299 (13)	0.0475 (4)
C1	0.5892 (2)	0.33743 (19)	0.54821 (16)	0.0456 (5)
C2	0.5624 (2)	0.1225 (2)	0.62047 (16)	0.0474 (5)
C3	0.42031 (19)	0.15976 (18)	0.66859 (14)	0.0411 (4)
C4	0.3337 (2)	0.08197 (18)	0.73401 (14)	0.0404 (4)
C5	0.1967 (2)	0.12798 (18)	0.76963 (15)	0.0438 (4)
C6	0.0920 (2)	0.0536 (2)	0.83849 (18)	0.0556 (5)
C7	-0.0623 (2)	0.10073 (19)	0.85164 (18)	0.0533 (5)
H7A	-0.1091	0.0604	0.9108	0.064*
H7B	-0.1259	0.0737	0.7851	0.064*
C8	-0.0549 (2)	0.25028 (19)	0.87620 (16)	0.0473 (5)
С9	0.0437 (3)	0.2941 (2)	0.98100 (19)	0.0691 (6)
H9A	0.0456	0.3875	0.9972	0.104*
H9B	0.1455	0.2703	0.9716	0.104*
H9C	0.0023	0.2520	1.0402	0.104*
C10	-0.2145 (2)	0.2942 (2)	0.8905 (2)	0.0650 (6)
H10A	-0.2567	0.2574	0.9520	0.098*
H10B	-0.2785	0.2647	0.8256	0.098*
H10C	-0.2088	0.3882	0.9029	0.098*

C11	0.0129 (2)	0.3077 (2)	0.77834 (18)	0.0544 (5)
H11A	-0.0631	0.2944	0.7174	0.065*
H11B	0.0350	0.4016	0.7966	0.065*
C12	0.1560 (2)	0.25081 (18)	0.74199 (16)	0.0458 (5)
C13	0.36838 (19)	0.27982 (18)	0.64708 (15)	0.0420 (4)
C14	0.38754 (19)	-0.04296 (18)	0.76792 (14)	0.0398 (4)
C15	0.3251 (2)	-0.16362 (19)	0.71966 (16)	0.0503 (5)
H15	0.2520	-0.1684	0.6618	0.060*
C16	0.3704 (2)	-0.2778 (2)	0.75669 (18)	0.0558 (5)
H16	0.3266	-0.3584	0.7235	0.067*
C17	0.4790 (2)	-0.2743 (2)	0.84175 (17)	0.0530 (5)
C18	0.5257 (3)	-0.4007 (3)	0.8817 (2)	0.0871 (8)
H18A	0.6009	-0.4355	0.8362	0.131*
H18B	0.4381	-0.4632	0.8783	0.131*
H18C	0.5675	-0.3833	0.9559	0.131*
C19	0.5433 (2)	-0.1537 (2)	0.88808 (17)	0.0548 (5)
H19	0.6181	-0.1493	0.9448	0.066*
C20	0.4988 (2)	-0.0388 (2)	0.85185 (16)	0.0485 (5)
H20	0.5442	0.0417	0.8842	0.058*
O4	-0.06364 (17)	0.16079 (19)	0.51009 (14)	0.0800 (5)
N4	0.09249 (19)	0.25425 (17)	0.39330 (15)	0.0582 (5)
C21	0.0462 (2)	0.1599 (3)	0.45278 (19)	0.0658 (6)
H21	0.1016	0.0868	0.4510	0.079*
C22	0.0147 (3)	0.3718 (2)	0.3888 (3)	0.0941 (10)
H22A	-0.0687	0.3694	0.4357	0.141*
H22B	-0.0234	0.3772	0.3151	0.141*
H22C	0.0845	0.4472	0.4128	0.141*
C23	0.2201 (3)	0.2428 (3)	0.3249 (2)	0.0797 (8)
H23A	0.2674	0.1643	0.3368	0.120*
H23B	0.2928	0.3176	0.3431	0.120*
H23C	0.1846	0.2390	0.2495	0.120*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.0489 (8)	0.0557 (9)	0.0800 (10)	0.0090 (6)	0.0278 (7)	0.0317 (7)
O2	0.0714 (10)	0.0658 (10)	0.0973 (12)	0.0368 (8)	0.0439 (9)	0.0436 (9)
O3	0.1149 (15)	0.0955 (14)	0.1588 (19)	0.0597 (12)	0.0936 (14)	0.0921 (14)
N1	0.0396 (8)	0.0558 (10)	0.0574 (10)	0.0151 (7)	0.0189 (7)	0.0236 (8)
N2	0.0446 (9)	0.0477 (9)	0.0676 (11)	0.0153 (7)	0.0225 (8)	0.0298 (8)
N3	0.0434 (8)	0.0466 (9)	0.0597 (10)	0.0131 (7)	0.0181 (7)	0.0249 (8)
C1	0.0395 (10)	0.0480 (11)	0.0535 (11)	0.0077 (8)	0.0124 (9)	0.0168 (9)
C2	0.0473 (11)	0.0521 (12)	0.0497 (11)	0.0165 (9)	0.0143 (9)	0.0232 (9)
C3	0.0396 (10)	0.0441 (10)	0.0441 (10)	0.0110 (8)	0.0097 (8)	0.0163 (8)
C4	0.0429 (10)	0.0408 (10)	0.0412 (10)	0.0100 (8)	0.0087 (8)	0.0132 (8)
C5	0.0440 (10)	0.0443 (11)	0.0478 (11)	0.0098 (8)	0.0142 (8)	0.0162 (8)
C6	0.0633 (13)	0.0447 (11)	0.0665 (13)	0.0131 (10)	0.0296 (11)	0.0229 (10)
C7	0.0485 (11)	0.0497 (12)	0.0646 (13)	0.0020 (9)	0.0198 (10)	0.0141 (10)

C8	0.0420 (10)	0.0464 (11)	0.0575 (12)	0.0090 (8)	0.0173 (9)	0.0138 (9)
C9	0.0749 (15)	0.0634 (15)	0.0693 (15)	0.0109 (12)	0.0075 (12)	0.0036 (12)
C10	0.0516 (12)	0.0669 (15)	0.0824 (16)	0.0141 (11)	0.0280 (11)	0.0164 (12)
C11	0.0459 (11)	0.0571 (13)	0.0687 (13)	0.0190 (9)	0.0227 (10)	0.0263 (10)
C12	0.0432 (10)	0.0462 (11)	0.0533 (11)	0.0113 (8)	0.0145 (9)	0.0194 (9)
C13	0.0376 (9)	0.0447 (11)	0.0484 (11)	0.0088 (8)	0.0120 (8)	0.0190 (8)
C14	0.0409 (9)	0.0410 (10)	0.0422 (10)	0.0103 (8)	0.0136 (8)	0.0163 (8)
C15	0.0527 (11)	0.0477 (12)	0.0514 (12)	0.0066 (9)	-0.0011 (9)	0.0113 (9)
C16	0.0631 (13)	0.0389 (11)	0.0670 (14)	0.0073 (9)	0.0069 (11)	0.0095 (10)
C17	0.0564 (12)	0.0500 (13)	0.0601 (13)	0.0194 (10)	0.0158 (10)	0.0236 (10)
C18	0.0965 (19)	0.0673 (17)	0.109 (2)	0.0288 (14)	0.0107 (16)	0.0448 (15)
C19	0.0550 (12)	0.0627 (14)	0.0508 (12)	0.0155 (10)	-0.0006 (10)	0.0198 (10)
C20	0.0520 (11)	0.0463 (11)	0.0483 (11)	0.0042 (9)	0.0019 (9)	0.0116 (9)
O4	0.0493 (9)	0.1184 (15)	0.0802 (11)	0.0195 (9)	0.0241 (8)	0.0278 (10)
N4	0.0482 (10)	0.0595 (11)	0.0705 (12)	0.0154 (8)	0.0172 (9)	0.0086 (9)
C21	0.0501 (12)	0.0872 (18)	0.0675 (15)	0.0244 (12)	0.0143 (11)	0.0229 (13)
C22	0.0639 (15)	0.0549 (15)	0.166 (3)	0.0120 (12)	0.0356 (17)	0.0052 (16)
C23	0.0733 (16)	0.0849 (18)	0.0918 (19)	0.0286 (14)	0.0400 (14)	0.0257 (15)

Geometric parameters (Å, °)

O1—C1	1.226 (2)	C10—H10C	0.9600
O2—C2	1.211 (2)	C11—C12	1.506 (2)
O3—C6	1.205 (2)	C11—H11A	0.9700
N1-C1	1.367 (2)	C11—H11B	0.9700
N1—C2	1.388 (2)	C14—C15	1.378 (3)
N1—H1	0.8997	C14—C20	1.382 (3)
N2	1.360 (2)	C15—C16	1.383 (3)
N2—C13	1.382 (2)	C15—H15	0.9300
N2—H2	0.8952	C16—C17	1.377 (3)
N3—C13	1.337 (2)	C16—H16	0.9300
N3—C12	1.338 (2)	C17—C19	1.375 (3)
C2—C3	1.478 (2)	C17—C18	1.516 (3)
C3—C13	1.398 (2)	C18—H18A	0.9600
C3—C4	1.405 (2)	C18—H18B	0.9600
C4—C5	1.409 (2)	C18—H18C	0.9600
C4—C14	1.497 (2)	C19—C20	1.384 (3)
C5—C12	1.411 (2)	C19—H19	0.9300
С5—С6	1.503 (2)	C20—H20	0.9300
C6—C7	1.495 (3)	O4—C21	1.230 (2)
С7—С8	1.533 (3)	N4—C21	1.326 (3)
C7—H7A	0.9700	N4—C22	1.444 (3)
С7—Н7В	0.9700	N4—C23	1.447 (3)
С8—С9	1.523 (3)	C21—H21	0.9300
C8—C11	1.526 (3)	C22—H22A	0.9600
C8—C10	1.528 (3)	C22—H22B	0.9600
С9—Н9А	0.9600	C22—H22C	0.9600
С9—Н9В	0.9600	C23—H23A	0.9600
С9—Н9С	0.9600	C23—H23B	0.9600

C10—H10A	0.9600	С23—Н23С	0.9600
C10—H10B	0.9600		
C1—N1—C2	127.04 (15)	C12—C11—H11B	108.5
C1—N1—H1	114.5	C8—C11—H11B	108.5
C2—N1—H1	118.3	H11A—C11—H11B	107.5
C1—N2—C13	123.74 (15)	N3—C12—C5	123.18 (16)
C1—N2—H2	118.6	N3—C12—C11	114.43 (16)
C13—N2—H2	117.6	C5-C12-C11	122.38 (16)
C13—N3—C12	116.77 (15)	N3—C13—N2	114.21 (15)
O1—C1—N2	122.24 (17)	N3—C13—C3	125.32 (15)
O1-C1-N1	122.30 (16)	N2—C13—C3	120.46 (15)
N2—C1—N1	115.46 (16)	C15—C14—C20	118.52 (17)
O2—C2—N1	119.28 (17)	C15—C14—C4	121.53 (17)
O2—C2—C3	125.96 (17)	C20—C14—C4	119.91 (17)
N1—C2—C3	114.75 (16)	C14—C15—C16	120.51 (19)
C13—C3—C4	117.92 (15)	C14—C15—H15	119.7
C13—C3—C2	117.88 (15)	C16—C15—H15	119.7
C4—C3—C2	124.20 (16)	C17—C16—C15	121.3 (2)
C3—C4—C5	117.59 (16)	С17—С16—Н16	119.4
C3—C4—C14	121.21 (15)	C15—C16—H16	119.4
C5—C4—C14	121.17 (15)	C19—C17—C16	117.98 (18)
C4—C5—C12	119.14 (16)	C19—C17—C18	121.7 (2)
C4—C5—C6	123.10 (16)	C16—C17—C18	120.4 (2)
C12—C5—C6	117.74 (16)	C17—C18—H18A	109.5
O3—C6—C7	121.12 (18)	C17—C18—H18B	109.5
O3—C6—C5	121.92 (19)	H18A—C18—H18B	109.5
C7—C6—C5	116.92 (17)	C17—C18—H18C	109.5
C6—C7—C8	111.96 (16)	H18A—C18—H18C	109.5
С6—С7—Н7А	109.2	H18B—C18—H18C	109.5
С8—С7—Н7А	109.2	C17—C19—C20	121.29 (19)
С6—С7—Н7В	109.2	С17—С19—Н19	119.4
С8—С7—Н7В	109.2	С20—С19—Н19	119.4
H7A—C7—H7B	107.9	C14—C20—C19	120.40 (19)
C9—C8—C11	111.19 (18)	C14—C20—H20	119.8
C9—C8—C10	108.88 (18)	С19—С20—Н20	119.8
C11—C8—C10	109.94 (16)	C21—N4—C22	122.15 (19)
C9—C8—C7	109.80 (17)	C21—N4—C23	121.93 (19)
C11—C8—C7	106.70 (16)	C22—N4—C23	115.86 (19)
C10—C8—C7	110.32 (16)	O4—C21—N4	125.7 (2)
С8—С9—Н9А	109.5	O4—C21—H21	117.2
С8—С9—Н9В	109.5	N4—C21—H21	117.2
Н9А—С9—Н9В	109.5	N4—C22—H22A	109.5
С8—С9—Н9С	109.5	N4—C22—H22B	109.5
Н9А—С9—Н9С	109.5	H22A—C22—H22B	109.5
Н9В—С9—Н9С	109.5	N4—C22—H22C	109.5
C8—C10—H10A	109.5	H22A—C22—H22C	109.5
C8—C10—H10B	109.5	H22B—C22—H22C	109.5
H10A—C10—H10B	109.5	N4—C23—H23A	109.5
C8—C10—H10C	109.5	N4—C23—H23B	109.5

H10A—C10—H10C	109.5	H23A—C23—H23B	109.5
H10B-C10-H10C	109.5	N4—C23—H23C	109.5
C12—C11—C8	114.94 (16)	H23A—C23—H23C	109.5
C12—C11—H11A	108.5	H23B—C23—H23C	109.5
C8—C11—H11A	108.5		
C13—N2—C1—O1	-176.75 (19)	C13—N3—C12—C11	-178.87 (17)
C13—N2—C1—N1	3.2 (3)	C4—C5—C12—N3	0.0 (3)
C2—N1—C1—O1	-176.3 (2)	C6—C5—C12—N3	178.69 (19)
C2—N1—C1—N2	3.8 (3)	C4—C5—C12—C11	-179.04 (18)
C1—N1—C2—O2	171.4 (2)	C6—C5—C12—C11	-0.4 (3)
C1—N1—C2—C3	-9.2 (3)	C8-C11-C12-N3	-159.06 (18)
O2—C2—C3—C13	-172.7 (2)	C8—C11—C12—C5	20.1 (3)
N1—C2—C3—C13	8.0 (3)	C12—N3—C13—N2	179.51 (17)
O2—C2—C3—C4	7.0 (3)	C12—N3—C13—C3	-1.7 (3)
N1—C2—C3—C4	-172.41 (18)	C1—N2—C13—N3	175.18 (18)
C13—C3—C4—C5	2.6 (3)	C1—N2—C13—C3	-3.7 (3)
C2—C3—C4—C5	-176.97 (18)	C4—C3—C13—N3	-0.6 (3)
C13—C3—C4—C14	-175.28 (17)	C2—C3—C13—N3	179.01 (18)
C2—C3—C4—C14	5.1 (3)	C4—C3—C13—N2	178.07 (17)
C3—C4—C5—C12	-2.4 (3)	C2—C3—C13—N2	-2.3 (3)
C14—C4—C5—C12	175.53 (18)	C3—C4—C14—C15	-104.4 (2)
C3—C4—C5—C6	179.03 (18)	C5-C4-C14-C15	77.8 (2)
C14—C4—C5—C6	-3.1 (3)	C3—C4—C14—C20	77.8 (2)
C4—C5—C6—O3	13.9 (4)	C5—C4—C14—C20	-100.1 (2)
C12—C5—C6—O3	-164.7 (2)	C20-C14-C15-C16	1.7 (3)
C4—C5—C6—C7	-168.34 (19)	C4-C14-C15-C16	-176.17 (17)
C12—C5—C6—C7	13.1 (3)	C14—C15—C16—C17	-0.4 (3)
O3—C6—C7—C8	132.9 (3)	C15—C16—C17—C19	-1.0 (3)
C5—C6—C7—C8	-45.0 (3)	C15—C16—C17—C18	179.4 (2)
C6—C7—C8—C9	-59.3 (2)	C16-C17-C19-C20	1.0 (3)
C6—C7—C8—C11	61.3 (2)	C18—C17—C19—C20	-179.3 (2)
C6—C7—C8—C10	-179.26 (18)	C15-C14-C20-C19	-1.6 (3)
C9—C8—C11—C12	70.9 (2)	C4-C14-C20-C19	176.28 (17)
C10-C8-C11-C12	-168.42 (18)	C17—C19—C20—C14	0.3 (3)
C7—C8—C11—C12	-48.8 (2)	C22—N4—C21—O4	-0.6 (4)
C13—N3—C12—C5	2.0 (3)	C23—N4—C21—O4	-177.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!$
N1—H1···O4 ⁱ	0.90	1.96	2.854 (2)	170
N2—H2···O1 ⁱⁱ	0.90	1.97	2.846 (2)	167
Symmetry codes: (i) $x+1$, y , z ; (ii) $-x+1$, $-y+1$, $-z+1$.				

